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Eulerian diagnostics for Lagrangian chaos in three-dimensional Navier-Stokes flows
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Based on symmetry considerations, Eulerian quantities are defined which can serve as diagnostics for the
regions of the flow where Lagrangian chaos is possible in a three-dimensional Navier-Stokes flow. The
applicability of the diagnostics is tested in two model flows which are perturbative solutions of the three-
dimensional Navier-Stokes equation: the eccentric Taylor vortex and the~concentric! wavy Taylor vortex.
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PACS number~s!: 47.15.2x
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I. INTRODUCTION

It is well known by now that the motion of a passiv
tracer in a laminar fluid flow can be very complicated, givi
rise to Lagrangian chaos. Such behavior might appear in
case of a two-dimensional flow with a periodic time depe
dence or a fully three-dimensional flow. Whereas the cas
two-dimensional time-dependent flows is relatively well u
derstood~see, for instance, Refs.@1–3#!, a smaller number of
studies has been devoted to similar phenomena in th
dimensional flows @4–12#. Furthermore, the three
dimensional studies were based on kinematic models w
are not solutions of the Navier-Stokes equations, and th
fore can be expected to lack the essential physical feature
the problem. The exception are a few recent studies@13–15#
in which particle paths in perturbative solutions of t
Navier-Stokes equations have been studied in some det

The aim of this paper is to study the physics of chao
advection in a three-dimensional solution of the Navi
Stokes equation. It was pointed out in Ref.@10# that viscous
effects determine the chaoticity of three-dimensional Nav
Stokes flows away from the boundaries, where the mo
can be considered almost dissipation free. As Arnold@16#
observed, steady bounded analytic Euler flows for wh
vorticity and velocity are not parallel, bounded by analy
surfaces in three-dimensional Euclidian space, admit a n
trivial symmetry generated by vorticity and thus are in
grable. This integrability can be broken by viscous effects
fact, as we show below, via a simple argument, that
above integrability theorem of Arnold can be extended
include the flows that are viscous but have a flexion poten
~i.e., the curl of vorticity is a potential vector field; this in
cludes flexion-free fields for which the curl of vorticity i
zero@17#!. A related work was carried out by Kozlov in Re
@18#, where he proved that viscous flows typically do n
possess integrals of motion. However, the geometry of
boundaries often impose volume-preserving symmetries
preserve integrability even though the dynamical symme
imposed by the Euler equations is broken. Such symme
need to be accounted for in any integrability consideratio
For example, Couette flow is viscous but rotationally sy
metric, and thus integrable. In this paper we introduce Eu
rian diagnostics—quantities which are local functions of
571063-651X/98/57~1!/482~9!/$15.00
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velocity and its gradients—which highlight the region
where Lagrangian chaos is possible. This is done followin
symmetry approach suggested by the work in Refs.@10,11#
~for an extension, see Ref.@19#!. The symmetries we use ar
geometric~related to the boundary conditions or the geo
etry of the container! and dynamical symmetries—those r
lated to the physics of the flow, and in particular to the d
namics of the Navier-Stokes equation. We show that
location of chaotic zones in three-dimensional steady flo
is related to zones where some of the symmetries of
problem are broken. We propose measures for symm
breaking which are Eulerian quantities. Our results are va
for steady flows, or flows which are steady in a rotati
frame. They are tested on analytical perturbative soluti
for the flow between concentric cylinders and eccentric c
inders ~with small eccentricity! given by Davey, DiPrima,
and Stuart@20# and DiPrima and Stuart@21#, respectively.

It is important to note that the results presented here
be justified rigorously in perturbative situations: the posit
ity of the proposed diagnostic in certain regions of the phy
cal space implies, by Melnikov-type calculation, chaos. H
the unperturbed flow is an Euler flow, and its perturbation
provided by viscous terms. In this context, the integrabil
of the unperturbed, Euler flow is assumed. Thus, the cas
Arnold-Beltrani-Childress~ABC! flows @22,23# is excluded
from our considerations. Despite their popularity as toy mo
els for chaotic advection in three-dimensional steady fl
flows, we believe ABC flows are, due to the relationsh
between velocity and vorticity, exceptional in the class
Euler flows in a three-dimensional Euclidean space.

II. DEFINITION OF EULERIAN DIAGNOSTICS

In this section we define Eulerian diagnostics for the
gions of the flow where chaotic streamlines might appear
volume-preserving symmetry imposes constraints on the
namics of three-dimensional, steady incompressible flow
the form of a constant of the motion@11,16,24#. This means
that the orbits are constrained to lie on a two-dimensio
surface, and thus the dynamics are reducible to those
two-dimensional system for which the orbits will have
follow regular dynamics. For a detailed account of the eff
482 © 1998 The American Physical Society
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57 483EULERIAN DIAGNOSTICS FOR LAGRANGIAN CHAOS . . .
of symmetries in three-dimensional volume preserving flo
see Refs.@10,11,24#.

A. Geometrical symmetries

Geometric symmetries are dictated by the geometry of
flow. An example of such a symmetry is the azimuthal sy
metry in the Taylor vortex between concentric rotating c
inders. Such a geometric symmetry is broken when the
locity field becomes dependent on the azimuthal directi
For the particular case of the Taylor vortex this is achiev
either by making the system eccentric or by the onset o
wave. In both of these cases chaotic streamlines can ap
@13–15#.

B. Dynamical symmetries

Dynamical symmetries are in general more difficult
spot than the geometrical ones. They are associated with
physics of the flow. The dynamical symmetry that we co
sider is associated with the steady Navier-Stokes equa
for a fluid of constant unit density:

v3v1 1
2 ¹v252¹P1n¹3v, ~2.1!

wherev is the vorticity,v3v is the Lamb vector,P is the
pressure and the term¹3v is the flexion field @17#. The
familiar Bernoulli function associated with Euler flows an
defined by

B5
v2

2
1P ~2.2!

changes along a trajectory according to

dB

dt
5n~¹3v!•v. ~2.3!

It is clear that if the flexion field vanishes or is always pe
pendicular to the velocity thenB is a constant of the motion
This implies integrability ifB is not a constant everywhere
For flows in whichn¹3v50, the only case in which cha
otic motion is possible is that of Beltrami flowsv5cv for
which the constant of proportionalityc is independent of
space. When¹3v50, the only element of this set of vecto
fields is that with zero velocity everywhere. Ifn50 ~the case
of a Euler flow! flows with v5cv are the only ones with the
possibility of chaotic motion. We make a distinction betwe
flows with ¹3v50, andn50 because, although they solv
the same equation, they do not satisfy the same boun
conditions. In these cases the motion is restricted to La
surfacesB5const@17#. This was observed by Arnold@16#,
who also investigated the topological structure of these
faces, and proved that they were cylinders or tori in the c
of an analytical velocity field bounded by an analytic su
face. In Refs.@10,11,24# it was proven that such a symmet
implies that coordinates can be constructed such that the
locity field is a Hamiltonian system in two of the variable
and the dynamics of the third variable depends only on
dynamics of the Hamiltonian part.

The termn(¹3v) clearly determines the importance
dissipative effects in the flow. A quantity that measures
,
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relative importance of inertial and dissipative effects at ea
point in the flow is the local Reynolds number defined as
ratio of the magnitude of the inertial term over the magnitu
of the dissipation

Rel5
uv•¹vu

un¹3vu
. ~2.4!

In regions where this number is large, inertial effects dom
nate dissipative effects, and regular motion is expected
the regions where this number is small, Lagrangian chao
likely to occur. We will see that Rel is too crude a diagnostic
for Lagrangian chaos. We thus turn to symmetry consid
ations.

Taking the curl of Eq.~2.1! we obtain

v•¹v2v•¹v5n¹3~¹3v!. ~2.5!

The left-hand side is the so-called Lie bracket of the veloc
and vorticity field. When the Lie bracket vanishes—a p
ticular instance of which is when the flexion field is zero
the two vector fields commute, and the integrability of bo
is implied if they are nowhere parallel@16,24#. Thus, a con-
stant of motion exists ifn¹3¹3v50, i.e., ¹3v52¹s
for some smooth functions called theflexion potential@17#.
The constant of motion is given by

B5
v2

2
1P1ns.

Note that creeping flows in Stokes approximations sati
¹3¹3v50. But it is not true in general that Stokes flow
are integrable. Indeed, consistent with the Stokes approxi
tion we could neglectv2/2 in the expression forB, and ex-
pect that the integral of motion isB5P1ns. But the func-
tion s for Stokes flows satisfies¹P1n¹s50. Thus s5
2P/n1C, whereC is an arbitrary constant, and the integr
of motion becomes trivial.

C. A Eulerian diagnostic for chaotic advection

Very often there is an interplay of more than one symm
try in a system. One of the symmetries can break down,
another persists and preserves integrability. An exampl
provided by the transition from Couette flow to Taylor vo
tex flow. The Couette flow possesses the dynamical sym
try as it is flexion-free (¹3v50), geometric translationa
symmetry along thez axis, and the geometric azimutha
symmetry, all of which are volume preserving. The first tw
of these are broken with the onset of Taylor vortices, but
geometric azimuthal symmetry persists, ensuring integra
ity. Another example is the eccentric Couette flow cons
ered as a perturbation of the concentric Couette flow. T
dynamical symmetry in the eccentric flow is broken, beca
with the onset of eccentricity the flexion field becomes no
zero. The geometric azimuthal symmetry is also broken,
the translational invariance in the direction ofz is not broken
and preserves integrability. In order that chaotic advectio
possible, all of the symmetries of the unperturbed probl
need to be broken. Generally, it is not easy to identify all
the symmetries. But in the perturbative setting it is natura
search among the symmetries of the unperturbed prob
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FIG. 1. ~a! The flexion field magnitudeu¹
3vu, and~b! the local Reynolds number Rel for
the wavy Taylor vortex atc50 in the comoving
frame of the wave. These quantities have be
scaled by their maximum values. The outflo
boundary is located atz50, and the inflow
boundary atz5p.
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For Navier-Stokes flows at high Reynolds numbers the fl
can be considered, away from the boundaries, as a s
perturbation of an Euler flow. Symmetries arising from t
geometry of the container are another natural choice.

Based on the above discussion, we define an Eule
diagnosticD which measures the pointwise deviation fro
the symmetries of the unperturbed problem. A plot ofD as a
function of space will show whereD deviates from zero, and
hence will highlight the regions where chaotic streamlin
and enhanced mixing are expected. Since in our exam
the unperturbed problem is concentric or eccentric Cou
flow with the above described symmetries, we defi
all

n

s
es
te
e

D5~¹3v!2S ]v

]u D 2S ]v

]zD
2

. ~2.6!

Let us denote the generator of the azimuthal symmetry gr
by wu5(0,1,0) in cylindrical polar coordinates (x,u,z), and
the generator of the axial symmetry bywz5(0,0,1). The
terms ]v/]u and ]v/]z are related to Lie brackets of th
velocity field with the generator of the geometrical symme
group by @(1/r )(]v/]u)#5@v,wu# and (]v/]z)5@v,wz#.
Thus they are zero in the case whenv admits the correspond
ing symmetry group. For the dynamical symmetry, w
choose to measure the deviation from symmetry
FIG. 2. The Eulerian diagnosticD for the
wavy Taylor vortex atc50 in the comoving
frame of the wave.D is scaled by its maximum
value.
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57 485EULERIAN DIAGNOSTICS FOR LAGRANGIAN CHAOS . . .
(¹3v), and not the Lie bracket of velocity and vorticit
n(¹3¹3v). This is primarily because of the fact discuss
above that the latter term is zero for a possibly nonintegra
Stokes flow. An additional reason is based on the pertu
tive nature of the cases we treat: as was shown aboven¹
3v is the term that is responsible for deviations from co
stancy of the Bernoulli integral.

III. APPLICATION OF THE DIAGNOSTIC
IN TWO EXAMPLES

In this section we apply the diagnostic tools we propos
in Sec. II to two examples of a Navier-Stokes flow. Both
these examples are perturbations of the flexion-free Cou
flow. The first one is the wavy vortex mode solution obtain
by Davey, DiPrima, and Stuart@20#, for which Lagrangian
properties were studied in Refs.@14,15#. In the second ex-
ample the perturbation is due to eccentricity. This solut
was obtained by DiPrima and Stuart@21#, and its Lagrangian
properties were studied in Ref.@13#.

A. Concentric case

Consider the fluid flow between two infinitely long con
centric cylinders. Let

V05
V11V2

2
, a52S 12m

11m D , m5
V2

V1
, ~3.1!

whereV1 denotes the angular velocity of the inner cylind
andV2 the angular velocity of the outer cylinder. The rad
of the cylinders are denoted byR1 andR2, with R2.R1. Let

R05
R11R2

2
, d5R22R1 , d5

d

R0
. ~3.2!

The coordinates are defined as

R5R01xd, Z5zd, ~3.3!

with (x,u,z) cylindrical polar coordinates. The Taylor num
ber T is defined by

T52
4AV0d4

n2
,

whereA is given by

A5
R2

2V22R1
2V1

R2
22R1

2
.

The velocity fieldv5(vx ,vu ,vz) is given to the first order in
the gap parameterd by

vx522aV0d3/2T1/2@Ac~t! f 20~x!cos~z!

1Bc~t!h20~x!cos~z!eimu

1Bs~t!l 20~x!sin~z!eimu1c.c.#,
le
a-

-

d
f
tte
d

n

vu5dV0d21@12ax1Ac~t! f 0~x!cos~z!

1Bc~t!h0~x!cos~z!eimu

1Bs~t!l 0~x!sin~z!eimu1c.c.#,

vz522aV0d3/2T1/2@Ac~t! f 30~x!sin~z!

1Bc~t!h30~x!sin~z!eimu

1Bs~t!l 30~x!cos~z!eimu1c.c.#,

where c.c. denotes complex conjugate.
The functionsf 0 , f 20, f 30,h0 ,h20,h30,g0 ,g20, andg30 are

functions of the radial coordinatex, and are given by the
solution of boundary value problems. For more details on
boundary value problems these functions have to satisfy,
reader is referred to Refs.@15,20#. The terms proportional to
Ac are the contribution of the Taylor vortex, and the term
proportional toBs are the contribution of the wavy vortex.

1. Wavy vortex flow

In this paper we will consider the following paramet
values for the wavy vortex:

Ac50.3442, Bs50.0336eivt, v525.1380. ~3.4!

FIG. 3. Particle paths for the wavy Taylor vortex flow.~a! The
trajectory of a particle that remains on the surface of a tw
dimensional torus centered on the core of a Taylor vortex.~b! The
trajectory of a fluid element whose initial position lies outside t
torus in~a!. The fluid element wanders from vortex to vortex in a
irregular manner.
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FIG. 4. ~a! The flexion field magnitudeu¹
3vu, and~b! the local Reynolds number Rel for
the small eccentricity (e50.1) Taylor vortex
case. The vortex amplitude isA51000. The
quantities are calculated atu52p/2 and are
scaled by their maximum value there. The ou
flow boundary is located atz50 and the inflow
boundary atz5p.
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The Taylor number has the valueT51855, withd50.05 and
m50, in accordance with the values used in Ref.@15#. The
wavy vortex is a steady flow in the frame rotating with t
wave, and so the dynamical symmetry described ab
holds. Thus the results shown in Figs. 1–3 are compute
the comoving frame. Note thatc denotes the azimuthal co
ordinate in this frame.

In Fig. 1~a! we show the flexion field magnitudeu¹3vu,
and in Fig. 1~b! the local Reynolds number Rel for the wavy
Taylor vortex atc50. Note that the vortex inflow boundar
is located atz5p and the outflow boundary atz50. The
plot of Rel has a peak in the center of the vortex, showi
that the fluid is nearly inviscid there.

In Fig. 2 we show a plot of the Eulerian diagnosticD.
Comparing this figure with Fig. 1~a!, we see thatD is rela-
tively small near the boundaries compared tou¹3vu. This is
due to the fact that in the perturbed problem the azimu
symmetry is not heavily broken near the boundaries, and
]v/]u, and henceD, is close to zero there. The same hol
for the axial symmetry near the separating surfacesz
5kp, k50,61, . . . . It iseasy to see that the total area ov
whichD is small is considerably larger than the area wh
the flexion field magnitude is small, thus clearly showing t
interaction of the dynamical and geometric symmetries.

Finally we note that on comparing the plot ofD with the
particle orbits in the wavy Taylor vortex shown in Fig. 3, w
find that the regions whereD attains its minimum value cor
respond to the regions of~near! integrable streamlines
whereas its peaks correspond to regions where cha
streamlines occur.
e
in
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r
e
e
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B. Eccentric Taylor vortex

We now apply our diagnostic tool to the eccentric Tay
vortex flow using the asymptotic solution of DiPrima an
Stuart@21#. The particle paths for this flow were studied
Ref. @13#. We briefly summarize the flow field, and refer th
reader to the above two references for more details.
coordinate system used is a bipolar coordinate system s
that x is a scaled radial coordinate (r being the original
radial coordinate! corresponding to2 1

2 on the inner cylinder,
and to 1

2 on the outer cylinder,u is an angular coordinate
corresponding tou50 at the large gap and tou5p at the
small gap, andz is a suitably scaled coordinate along th
axes of the cylinders. The velocity field is given by

vr5
a

2
eU~x,u!1

1

aQ
e1/2uTV , ~3.5!

vu5 1
2 V~x,u!1e1/2vTV , ~3.6!

vz5
1

aQ
e1/2wTV , ~3.7!

whereU(x,u) andV(x,u) are the contributions of the eccen
tric Couette flow which clearly has a geometric symme
with respect to translations along thez axis. The terms with
subscripts TV are the Taylor vortex contribution, which a
given by

uTV52B~u! f 0~x!cos~z!, ~3.8!
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FIG. 5. The Eulerian diagnosticD at u5
2p/2 scaled by its maximum value, for the sma
eccentricity Taylor vortex case.~a! D as a func-
tion of x andz. ~b! A plot of D taken atz50.5.
~c! A plot of D taken atz51.5.
,

vTV5B~u!g0~x!cos~z!, ~3.9!

wTV5l21D f 0~x!sin~z!, ~3.10!

B2~u!5A2expS v@sin~u!21#

k D , ~3.11!
where v51.122, andk is obtained by the equalitya
54k2e2. In the aboveQ is the velocity of the inner cylinder
the outer is stationary,e is the eccentricity parameter,l is
the axial wave number for the vortex,a5d(12e2)1/2, where
d5@(b2a)/a#, a,b are the radii of the cylinders, andA
is the amplitude of the Taylor vortex. The functionsf 0(x)
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488 57YANNACOPOULOS, MEZIĆ, ROWLANDS, AND KING
andg0(x) are the solutions of some suitably defined bound
ary value problems that we omit for brevity, and are given i
detail in Refs.@21# and@13#, as are the exact expressions fo
U(x,u) andV(x,u).

1. Small eccentricity

In Fig. 4~a! we show the flexion field magnitude for the
eccentric Taylor vortex for the case ofe50.1, d50.096,
andA51000, in accordance with the values chosen in Re
@13#. In Fig. 4~b! the local Reynolds number is shown, vali-
dating as in the case of the concentric flow, that the center
the vortex can be considered as inviscid. More illuminatin
is a plot of the Eulerian diagnosticD which ‘‘measures’’ the
interaction of the geometric and the dynamical symmetr
This is shown in Fig. 5~a! ~for u52p/2) and two sections
of this surface with the planesz50.5 andz51.5 are shown
in Figs. 5~b! and 5~c!, respectively.

It is interesting to compare Figs. 5~b! and 5~c! with the
surface of sectionu50 for the particle paths in Fig. 6. It is
clearly seen that regions whereD deviates from zero high-
light the chaotic region. The section ofD with the z50.5
plane highlights a single chaotic region, and the section ofD
with the z51.5 plane highlights two chaotic regions – both
in accordance with what is observed in the surface of sectio
Because of the remnants of the rotational symmetry near t
walls, the diagnosticD is small there. Comparison with Fig.
6 ~also see Fig. 3~d! in Ref. @13#! shows that chaotic orbits
indeed stay away from the cylinders.

Note that we correlatedD at u52p/2 with the surface of
section atu50. We did this because there is a ‘‘memory
effect.’’ That is, a particle’s motion observed at some angu
lar position is determined by events upstream of it. That i
the diagnostic varies withu ~and hence so do the flexion field
and the local Reynolds number!. In the case of the wavy
vortex the diagnostic is similar for differentc, so the
memory effect is not that apparent.

FIG. 6. Surface of section for the small eccentricity Taylor vor
tex taken at the position of largest gap (u50).
-

f.

of
g

.

n.
he

-
,

2. Large eccentricity

We now consider the case of large eccentricity withe
50.5, d50.096, andA5100. The position of the wides
gap between the cylinders isu50. At this eccentricity there
is a zone of recirculation in the wide gap region of the s
tem. Atu50 it extends from aboutx50 to x50.5.~See Ref.
@13# for further details.!

Since the large eccentricity case is further away from
rotationally symmetric Couette flow, we choose not to
clude the measure of rotational symmetry in the diagnos
Thus here we defineD by

D5~¹3v!2S ]v

]zD
2

. ~3.12!

In Fig. 7 we show the flexion field magnitude and th
local Reynolds number, and in Fig. 8 the diagnostic atu5
2p/2 for the large eccentricity Taylor vortex. Inspection
Fig. 8 shows that remnants of the symmetries are still pres
in the region close tox520.2, which corresponds in Fig. 9
to the center of the vortex where the orbits are regular. T
symmetries are broken near the inner wall and near
middle of the annulus atx.0.

We now compare Fig. 8 with the surface of section Fig
obtained at the downstream locationu50. Inspection of Fig.
8 shows that remnants of the symmetries are still presen
the region close tox520.2, which corresponds in Fig. 9 t
the center of the vortex where the orbits are regular. T
symmetries are broken near the inner wall and in the ou
half of the annulus (0<x<1/2). Near the inner wall the
symmetry is broken only weakly, and this correlates with t
fact that the dynamics are more regular near the inner w
The stronger symmetry breaking in the outer half of the
nulus corresponds to orbits~originating from that part of the
annulus atu52p/2) passing near or through the broke
‘‘dividing’’ stream surface into the recirculation regio
where the dynamics get ‘‘reshuffled.’’ This is the prima
source of stochasticity in this flow.

We also find that, at least in these examples, the spa
gradients ofD increase withA. Ashwin and King found that
the area occupied by the regular orbits decreased with
increase inA. Thus it is tempting to conjecture that a rel
tionship exists between the area occupied by the regular
jectories and the spatial gradients ofD. However, a definite
statement must await further development of the theory
further numerical studies.

IV. TIME-DEPENDENT CASE

A desirable extension of the methods presented h
would be to the case of flows that are essentially unstead
the sense that they cannot be made steady by a transfo
tion to a moving frame. Unfortunately, the dynamical sym
metry, provided by Arnold’s theorem in the steady ca
ceases to provide integrability in this case. Still, someth
can be done when a spatial volume-preserving symmetr
present. An example is provided by the case of translatio
or rotational symmetry of a Euler flow. The spatial symme
provides a stream function for the flow, and the velocity fie
is given by
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FIG. 7. ~a! The flexion field magnitudeu¹
3vu, and~b! the local Reynolds number Rel for
the large eccentricity (e50.5) Taylor vortex
case. The vortex amplitude isA5100. The quan-
tities are calculated atu52p/2, and are scaled
by their maximum value there. The outflow
boundary is located atz50, and the inflow
boundary atz5p.
it
th

-
tial
nce

w

ted
ẋ5
]c~x,y,t !

]y
, ẏ52

]c~x,y,t !

]x
, ż5 f ~x,y,t !

~4.1!

~see Refs.@11,24#!. In the case of translational symmetry,
is easy to see that the equation for the magnitude of
vorticity vz in the directionz of the symmetry is

]vz

]t
1v•¹vz50. ~4.2!
e

It was shown in Ref.@24# that this conservation law is asso
ciated with a dynamical symmetry generated by the spa
gradients of the vorticity. Now assume that the depende
on the time of the flow is periodic. Thenvz is a constant of
motion for v(x,y,t). The corresponding Navier-Stokes flo
is given by

]vz

]t
1v•¹vz5nnvz . ~4.3!

The diagnostic for nonintegrability needs to be construc
e

FIG. 8. The Eulerian diagnosticD at u5

2p/2, scaled by its maximum value for the larg
eccentricity Taylor vortex case.
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differently than was done in the steady case, since the
sence of either symmetry~geometrical, translational symme
try, or dynamical Euler symmetry! is enough to render the
flow nonintegrable. Thus one possible diagnostic is

D5unvzu1U]v

]zU1U]v

]uU. ~4.4!

FIG. 9. Surface of section for the large eccentricity Taylor vo
tex taken at the position of largest gap (u50). The vortex ampli-
tude isA5100. At u50 the recirculation zone extends from abo
x50 to the outer cylinder atx5

1
2. Note that all intersections of the

orbit with the surface are shown. The dots indicate intersection
the orbit traveling in the same direction as the inner cylinder, a
the crosses mark the intersections in the opposite direction. W
the orbit is in the recirculation zone, intersections in both directio
often occur.
d

s

y,
b-

A similar treatment can be done in the case of quasig
strophic flows for which the potential vorticityq(x,y,t)
5nc1by is the conserved quantity.

Another example of an essentially time-dependent fl
with remnants of spatial symmetry, suitable for the pertur
tive methods described here, is that of modulated wavy v
tex flow. We will pursue further investigation of the time
dependent case in future work.

V. DISCUSSION AND CONCLUSIONS

In this paper, based on symmetry considerations, we
troduced Eulerian diagnostics that serve as an indicator
determining regions where chaotic streamlines may appea
three-dimensional steady Navier-Stokes flows. Diagnos
are tested on two approximate analytical solutions of
Navier-Stokes equation. A good correlation is found to ex
between the proposed diagnostic and the particle orbits.
fortunately, the analytic solutions we used are the only o
available to us. For a more exhaustive test of our diagno
tools we need numerical solutions or experimental meas
ments. The diagnostic tools presented here can highlight
location of chaotic particle paths without the need to in
grate particle orbits in a large class of flows.

It is a built-in assumption of this paper that the flows w
study are such that velocity and vorticity vectors are at
angle that is an order of magnitude larger than the inve
Reynolds number. We do not know of any experimental
amples in which this would be violated. In case such a s
ation exists, and velocity is uniformly represented as vor
ity multiplied by a constant, ABC flows would provide
good model. In the case of a more general Beltrami flow,
same type of diagnostic as presented in this paper can
derived.
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