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Eulerian diagnostics for Lagrangian chaos in three-dimensional Navier-Stokes flows
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Based on symmetry considerations, Eulerian quantities are defined which can serve as diagnostics for the
regions of the flow where Lagrangian chaos is possible in a three-dimensional Navier-Stokes flow. The
applicability of the diagnostics is tested in two model flows which are perturbative solutions of the three-
dimensional Navier-Stokes equation: the eccentric Taylor vortex andctiveentri¢ wavy Taylor vortex.
[S1063-651X%98)01101-5

PACS numbd(s): 47.15—x

I. INTRODUCTION velocity and its gradients—which highlight the regions
where Lagrangian chaos is possible. This is done following a

It is well known by now that the motion of a passive symmetry approach suggested by the work in REef§,11]
tracer in a laminar fluid flow can be very complicated, giving (for an extension, see R¢fl9]). The symmetries we use are
rise to Lagrangian chaos. Such behavior might appear in thgeometric(related to the boundary conditions or the geom-
case of a two-dimensional flow with a periodic time depen-etry of the containgrand dynamical symmetries—those re-
dence or a fully three-dimensional flow. Whereas the case dhted to the physics of the flow, and in particular to the dy-
two-dimensional time-dependent flows is relatively well un-namics of the Navier-Stokes equation. We show that the
derstoodssee, for instance, Refsl-3]), a smaller number of |ocation of chaotic zones in three-dimensional steady flows
studies has been devoted to similar phenomena in thregs related to zones where some of the symmetries of the
dimensional flows [4-12. Furthermore, the three- problem are broken. We propose measures for symmetry
dimensional studies were based on kinematic models whicBreaking which are Eulerian quantities. Our results are valid
are not solutions of the Navier-Stokes equations, and thergg, steady flows, or flows which are steady in a rotating
fore can be expected to lack the essential physical features g¢ame. They are tested on analytical perturbative solutions
the problem. The exception are a few recent studi@s-15  for the flow between concentric cylinders and eccentric cyl-
in which particle pathS in perturbative solutions of theinders (W|th small eccentricity given by Davey, DiPrima'
Navier-Stokes equations have been studied in some detail.gng Stuar{20] and DiPrima and Stuaf@1], respectively.

The aim of this paper is to study the physics of chaotic |t js important to note that the results presented here can
advection in a three-dimensional solution of the Navier-pe justified rigorously in perturbative situations: the positiv-
Stokes equation. It was pointed out in Riff0] that viscous jty of the proposed diagnostic in certain regions of the physi-
effects determine the ChaOtiCity of three-dimensional NaVierca| Space imp”eS, by Me|nik0v_type Ca'cu'a‘[ion' Chaos_ Here
Stokes flows away from the boundaries, where the motiofhe unperturbed flow is an Euler flow, and its perturbation is
can be considered almost dissipation free. As Ardifll  provided by viscous terms. In this context, the integrability
observed, steady bounded analytic Euler flows for whictpf the unperturbed, Euler flow is assumed. Thus, the case of
vorticity and velocity are not parallel, bounded by analytic Arnold-Beltrani-ChildresSABC) flows [22,23 is excluded
surfaces in three-dimensional Euclidian Space, admit a norfrom our Consideraﬂons_ Despite their popu|arity as toy mod-
trivial symmetry generated by vorticity and thus are inte-g|s for chaotic advection in three-dimensional steady fluid
grable. This integrability can be broken by viscous effects. Inflows, we believe ABC flows are, due to the relationship

fact, as we show below, via a simple argument, that theyetween velocity and vorticity, exceptional in the class of
above integrability theorem of Arnold can be extended togyler flows in a three-dimensional Euclidean space.

include the flows that are viscous but have a flexion potential
(i.e., the curl of vorticity is a potential vector field; this in-
cludes flexion-free fields for which the curl of vorticity is
zero[17]). A related work was carried out by Kozlov in Ref.
[18], where he proved that viscous flows typically do not In this section we define Eulerian diagnostics for the re-
possess integrals of motion. However, the geometry of thgions of the flow where chaotic streamlines might appear. A
boundaries often impose volume-preserving symmetries thatolume-preserving symmetry imposes constraints on the dy-
preserve integrability even though the dynamical symmetnnamics of three-dimensional, steady incompressible flows in
imposed by the Euler equations is broken. Such symmetriethe form of a constant of the motidi1,16,24. This means
need to be accounted for in any integrability considerationsthat the orbits are constrained to lie on a two-dimensional
For example, Couette flow is viscous but rotationally sym-surface, and thus the dynamics are reducible to those of a
metric, and thus integrable. In this paper we introduce Euletwo-dimensional system for which the orbits will have to
rian diagnostics—quantities which are local functions of thefollow regular dynamics. For a detailed account of the effect

Il. DEFINITION OF EULERIAN DIAGNOSTICS
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of symmetries in three-dimensional volume preserving flowsrelative importance of inertial and dissipative effects at each
see Refs[10,11,24. point in the flow is the local Reynolds number defined as the
ratio of the magnitude of the inertial term over the magnitude

A. Geometrical symmetries of the dissipation

Geometric symmetries are dictated by the geometry of the V- V|
flow. An example of such a symmetry is the azimuthal sym- Reg =m.
metry in the Taylor vortex between concentric rotating cyl-

inders. Such a geometric symmetry is broken when the Ver, regions where this number is large, inertial effects domi-

locity field becomes dependent on the azimuthal directionte dissipative effects, and regular motion is expected. In

For the particular case of the Taylor vortex this is achievedyq regions where this number is small, Lagrangian chaos is

either by making the system eccentric or by the onset of §q|y t occur. We will see that Rés too crude a diagnostic

‘["gvel' én both of these cases chaotic streamlines can appegy | agrangian chaos. We thus turn to symmetry consider-
- ations.

Taking the curl of Eq(2.1) we obtain

(2.9

B. Dynamical symmetries

Dynamical symmetries are in general more difficult to - VW—V-Vo=rvVX (VX w). (2.5

spot than the geometrical ones. They are associated with thIehe left-hand side is the so-called Lie bracket of the velocity

p.hysmjs of the_flow. T_he dynamical symmetry that we €O and vorticity field. When the Lie bracket vanishes—a par-
sider is associated with the steady Navier-Stokes equat'ofiqcular instance of which is when the flexion field is zero—

for a fluid of constant unit density: the two vector fields commute, and the integrability of both
is implied if they are nowhere parallgl6,24. Thus, a con-
stant of motion exists VX VX w=0, i.e., VXw=—-Vo

for some smooth functionr called theflexion potentia[17].
The constant of motion is given by

wXV+ 3VW?=-VP+ 1V X w, (2.1

wherew is the vorticity, wX v is the Lamb vectorP is the
pressure and the teriMX w is the flexion field[17]. The

familiar Bernoulli function associated with Euler flows and V2
defined by B= > +P+vo.
V2
B= E+P (2.2 Note that creeping flows in Stokes approximations satisfy

VX VX w=0. But it is not true in general that Stokes flows
are integrable. Indeed, consistent with the Stokes approxima-

changes along a trajectory according to tion we could neglect?/2 in the expression foB, and ex-

dB pect that the integral of motion B=P+ vo. But the func-
— =p(VXw)-V. (2.3 tion o for Stokes flows satisfie§¥SP+ vVo=0. Thuso=
dt —P/v+C, whereC is an arbitrary constant, and the integral

. . . ) . . of motion becomes trivial.
It is clear that if the flexion field vanishes or is always per-

pendicular to the velocity theB is a constant of the motion.
This implies integrability ifB is not a constant everywhere.
For flows in whichvVX w=0, the only case in which cha- Very often there is an interplay of more than one symme-
otic motion is possible is that of Beltrami flows=cw for  try in a system. One of the symmetries can break down, but
which the constant of proportionality is independent of another persists and preserves integrability. An example is
space. WhelV X w=0, the only element of this set of vector provided by the transition from Couette flow to Taylor vor-
fields is that with zero velocity everywhere.=0 (the case tex flow. The Couette flow possesses the dynamical symme-
of a Euler flow flows with v=cw are the only ones with the try as it is flexion-free ¥ X w=0), geometric translational
possibility of chaotic motion. We make a distinction betweensymmetry along thez axis, and the geometric azimuthal
flows with VX w=0, andv=0 because, although they solve symmetry, all of which are volume preserving. The first two
the same equation, they do not satisfy the same boundanf these are broken with the onset of Taylor vortices, but the
conditions. In these cases the motion is restricted to Lamigeometric azimuthal symmetry persists, ensuring integrabil-
surfacesB=const[17]. This was observed by Arnold.6], ity. Another example is the eccentric Couette flow consid-
who also investigated the topological structure of these surered as a perturbation of the concentric Couette flow. The
faces, and proved that they were cylinders or tori in the casdynamical symmetry in the eccentric flow is broken, because
of an analytical velocity field bounded by an analytic sur-with the onset of eccentricity the flexion field becomes non-
face. In Refs[10,11,24 it was proven that such a symmetry zero. The geometric azimuthal symmetry is also broken, but
implies that coordinates can be constructed such that the véhe translational invariance in the directionzoif not broken
locity field is a Hamiltonian system in two of the variables, and preserves integrability. In order that chaotic advection is
and the dynamics of the third variable depends only on theossible, all of the symmetries of the unperturbed problem
dynamics of the Hamiltonian part. need to be broken. Generally, it is not easy to identify all of
The termv(VX w) clearly determines the importance of the symmetries. But in the perturbative setting it is natural to
dissipative effects in the flow. A quantity that measures thesearch among the symmetries of the unperturbed problem.

C. A Eulerian diagnostic for chaotic advection
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FIG. 1. (@ The flexion field magnitudgV
X w|, and(b) the local Reynolds number Rfor
the wavy Taylor vortex aty=0 in the comoving
frame of the wave. These quantities have been
Re scaled by their maximum values. The outflow
boundary is located ak=0, and the inflow
boundary atz= 1.

For Navier-Stokes flows at high Reynolds numbers the flow

can be considered, away from the boundaries, as a small D=(VX w)?

perturbation of an Euler flow. Symmetries arising from the

geometry of the container are another natural choice.
Based on the above discussion, we define an Euleriab

diagnosticD which measures the pointwise deviation from

;Hﬁcsti}gmnn;feg;l)(zgfvcnle sl;l]r(;rv)ve\l;;[/l;]rebr%d dré%)igltzrsnfrﬁrﬁlggr%asa?] d terms ov/90 and dv/dz are related to Lie brackets of the
o . . =7 velocity field with the generator of the geometrical symmetry
hence will highlight the regions where chaotic streamlines roup by [(1/r)(av/d6)]=[Vv,w,] and @v/3Z)=[v.w,].
and enhanced mixing are expected. Since in our exampl us they are zero in the cas;a v?/headmits the corre,spz)nd-
the unperturbed problem is concentric or eccentric Couettﬁ1g symmetry group. For the dynamical symmetry, we
flow with the above described symmetries, we definechoose to measure the deviation from symmetry by

v\ 2( av\?
T

et us denote the generator of the azimuthal symmetry group
y wy=(0,1,0) in cylindrical polar coordinatex(6,z), and
the generator of the axial symmetry lby,=(0,0,1). The

FIG. 2. The Eulerian diagnosti® for the
wavy Taylor vortex atyy=0 in the comoving
frame of the waveD is scaled by its maximum
value.
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(VX w), and not the Lie bracket of velocity and vorticity
(VX VX w). This is primarily because of the fact discussed
above that the latter term is zero for a possibly nonintegrable
Stokes flow. An additional reason is based on the perturba-
tive nature of the cases we treat: as was shown abeve,

X w is the term that is responsible for deviations from con-
stancy of the Bernoulli integral.

Ill. APPLICATION OF THE DIAGNOSTIC
IN TWO EXAMPLES

In this section we apply the diagnostic tools we proposed
in Sec. Il to two examples of a Navier-Stokes flow. Both of
these examples are perturbations of the flexion-free Couette
flow. The first one is the wavy vortex mode solution obtained
by Davey, DiPrima, and StuafR0], for which Lagrangian
properties were studied in Refgl4,15. In the second ex-
ample the perturbation is due to eccentricity. This solution
was obtained by DiPrima and Stuf2tl], and its Lagrangian
properties were studied in R4fL3].

A. Concentric case
Consider the fluid flow between two infinitely long con-
centric cylinders. Let

1 /’L_Q_lu

1-p

0,40,
B 1+u

OT1

(3.2

where(); denotes the angular velocity of the inner cylinder
and (), the angular velocity of the outer cylinder. The radii
of the cylinders are denoted R4 andR,, with R,>R;. Let

FIG. 3. Particle paths for the wavy Taylor vortex flo@) The
trajectory of a particle that remains on the surface of a two-
dimensional torus centered on the core of a Taylor vortexThe

trajectory of a fluid element whose initial position lies outside the

R+ R,

The coordinates are defined as
R=Ry+xd, Z=zd, (3.3

with (X, 8,2) cylindrical polar coordinates. The Taylor num-
berT is defined by

d X . .
o . d=R,—R;, &=—. (3.2 _torus in(a). The fluid element wanders from vortex to vortex in an
2 Ro irregular manner.

vy=6Q0d[1— ax+Al(7)fo(X)COL2)
+Bc(7)ho(x)cog2)e™’

+B4( 1)l g(x)sin(z)e™?+c.c],

v,=—2aQ 82TV A (1) f3o(X)sin(2)
+ Be( ) hao(x)sin(z)e'™?

4AQ,d* _
T2 +By(7)l39(x)cogz)eM?+c.c],
L where c.c. denotes complex conjugate.
whereA is given by The functionsf, f 0, f30.N0,N20.N30,90.920, andgs, are
functions of the radial coordinate, and are given by the

R%Qz— Rin solution of boundary value problems. For more details on the

= —Rz_ R2 boundary value problems these functions have to satisfy, the

2 1

reader is referred to Reffl5,20. The terms proportional to

A. are the contribution of the Taylor vortex, and the terms

The velocity fieldv= (v, ,v4,v,) is given to the first order in
the gap parametef by

vy=—2a0 8TV AL(7)f,o(X)cOK Z)

proportional toBg are the contribution of the wavy vortex.

1. Wavy vortex flow

In this paper we will consider the following parameter

+Bc(m)hyo(x)cogz)e™’ values for the wavy vortex:

+B4( 1)l yo(X)sin(z)e™M?+c.c],

A.=0.3442, B,=0.033&'!, w=—5.1380. (3.4)
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FIG. 4. (a) The flexion field magnitudéV
X |, and(b) the local Reynolds number Rfor
the small eccentricity =0.1) Taylor vortex
case. The vortex amplitude i&=1000. The
quantities are calculated &= —7/2 and are
scaled by their maximum value there. The out-
flow boundary is located a=0 and the inflow
boundary atz= .

(b)
The Taylor number has the vallle= 1855, withs=0.05 and B. Eccentric Taylor vortex
©=0, in accordance with the values used in R&b]. The We now apply our diagnostic tool to the eccentric Taylor

wavy vortex is a steady flow in the frame rotating with the ortex flow using the asymptotic solution of DiPrima and

wave, and so the dynamical symmetry described abov&yart[21]. The particle paths for this flow were studied in

holds. Thus the results shown in Figs. 1-3 are computed iRef [13]. We briefly summarize the flow field, and refer the

the comoving frame. Note that denotes the azimuthal co- yeader to the above two references for more details. The

ordinate in this frame. o _ coordinate system used is a bipolar coordinate system such
In Fig. 1(a) we show the flexion field magnitud& X e|,  hat x is a scaled radial coordinate (being the original

and in Fig. 1b) the local Reynolds number Rfer the wavy  ragjal coordinatecorresponding te- § on the inner cylinder,

Taylor vortex aty=0. Note that the vortex inflow boundary 5,4 to1 on the outer cylinderg is an angular coordinate

is located atz= = and t_he outflow boundary &=0. The_ corresponding t¥=0 at the large gap and 8= at the

plot of Rg has a peak in the center of the vortex, showinggmg|| gap, and: is a suitably scaled coordinate along the

that the fluid is nearly inviscid there. o axes of the cylinders. The velocity field is given by
In Fig. 2 we show a plot of the Eulerian diagnosfic
Comparing this figure with Fig. (&), we see thaD is rela- @ N
tively small near the boundaries compared¥x w|. This is UpTo eU(x,0)+ Q€ Ay, (3.9

due to the fact that in the perturbed problem the azimuthal

symmetry is not heavily broken near the boundaries, and so _1 1

avld6, and henceD, is close to zero there. The same holds vy=3V(X.0)+ € vy, 3.6
for the axial symmetry near the separating surfazes

=k, k=0,x1,....Itiseasy to see that the total area over v :ieuzw 3.7)
which D is small is considerably larger than the area where ¢ aQ ™

the flexion field magnitude is small, thus clearly showing the

interaction of the dynamical and geometric symmetries.  whereU(x, 8) andV(x, 6) are the contributions of the eccen-
Finally we note that on comparing the plot Dfwith the  tric Couette flow which clearly has a geometric symmetry

particle orbits in the wavy Taylor vortex shown in Fig. 3, we with respect to translations along theaxis. The terms with

find that the regions wherP attains its minimum value cor- subscripts TV are the Taylor vortex contribution, which are

respond to the regions ofnea) integrable streamlines, given by

whereas its peaks correspond to regions where chaotic

streamlines occur. ury=—B(0)fy(x)cogz), (3.8
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FIG. 5. The Eulerian diagnosti® at 6=
— /2 scaled by its maximum value, for the small
eccentricity Taylor vortex caséa) D as a func-
tion of x andz. (b) A plot of D taken atz=0.5.
(c) A plot of D taken atz=1.5.

—0.4 oz 0 01z 0a
(b)

vrv=B(6)gy(x)cog2), (3.9 Wwhere w=1.122, andk is obtained by the equalityx
=4k?€?. In the aboveQ is the velocity of the inner cylinder,
wry=\"IDfy(x)sin(z), (3.10 the outer is stationarye is the eccentricity parametex, is

the axial wave number for the vortex= 5(1— )2, where
o=[(b—a)/a], a<b are the radii of the cylinders, arnl
is the amplitude of the Taylor vortex. The functiofg(x)

(3.1)

BZ( 0) =A26X% M) ,

k
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0.5

FIG. 6. Surface of section for the small eccentricity Taylor vor-
tex taken at the position of largest gap=<0).

andgy(x) are the solutions of some suitably defined bound
ary value problems that we omit for brevity, and are given in
detall in Refs[21] and[13], as are the exact expressions for
U(x,0) andV(x,#6).

1. Small eccentricity

In Fig. 4@ we show the flexion field magnitude for the
eccentric Taylor vortex for the case ef=0.1, §=0.096,
and A=1000, in accordance with the values chosen in Ref
[13]. In Fig. 4b) the local Reynolds number is shown, vali-

ROWLANDS, AND KING

2. Large eccentricity

We now consider the case of large eccentricity wéth
=0.5, 6=0.096, andA=100. The position of the widest
gap between the cylinders &= 0. At this eccentricity there
is a zone of recirculation in the wide gap region of the sys-
tem. At#=0 it extends from abow=0 tox=0.5.(See Ref.
[13] for further details.

Since the large eccentricity case is further away from the
rotationally symmetric Couette flow, we choose not to in-
clude the measure of rotational symmetry in the diagnostic.
Thus here we defin® by

) 2

In Fig. 7 we show the flexion field magnitude and the
local Reynolds number, and in Fig. 8 the diagnosti@dat
—/2 for the large eccentricity Taylor vortex. Inspection of
Fig. 8 shows that remnants of the symmetries are still present
in the region close tax= — 0.2, which corresponds in Fig. 9
to the center of the vortex where the orbits are regular. The
symmetries are broken near the inner wall and near the
middle of the annulus at=0.

We now compare Fig. 8 with the surface of section Fig. 9
obtained at the downstream locatiér 0. Inspection of Fig.

8 shows that remnants of the symmetries are still present in
the region close ta= — 0.2, which corresponds in Fig. 9 to
the center of the vortex where the orbits are regular. The
symmetries are broken near the inner wall and in the outer
half of the annulus (&x=<1/2). Near the inner wall the
symmetry is broken only weakly, and this correlates with the
fact that the dynamics are more regular near the inner wall.
The stronger symmetry breaking in the outer half of the an-
nulus corresponds to orbitsriginating from that part of the

ov

= 2| __
D=(VX w) 7

(3.12

dating as in the case of the concentric flow, that the center adinnulus atd= — w/2) passing near or through the broken
the vortex can be considered as inviscid. More illuminating“dividing” stream surface into the recirculation region

is a plot of the Eulerian diagnosti2 which “measures” the
interaction of the geometric and the dynamical symmetry
This is shown in Fig. &) (for 6= — #/2) and two sections
of this surface with the planes=0.5 andz=1.5 are shown

in Figs. 8b) and 5c), respectively.

It is interesting to compare Figs(l§ and 5c) with the
surface of sectio®=0 for the particle paths in Fig. 6. It is
clearly seen that regions whef2 deviates from zero high-
light the chaotic region. The section @& with the z=0.5
plane highlights a single chaotic region, and the sectioP of
with the z=1.5 plane highlights two chaotic regions — both

where the dynamics get “reshuffled.” This is the primary
source of stochasticity in this flow.

We also find that, at least in these examples, the spatial
gradients ofD increase withA. Ashwin and King found that
the area occupied by the regular orbits decreased with an
increase inA. Thus it is tempting to conjecture that a rela-
tionship exists between the area occupied by the regular tra-

jectories and the spatial gradientsf However, a definite

statement must await further development of the theory and
further numerical studies.

in accordance with what is observed in the surface of section.
Because of the remnants of the rotational symmetry near the

walls, the diagnosti® is small there. Comparison with Fig.
6 (also see Fig. @) in Ref.[13]) shows that chaotic orbits
indeed stay away from the cylinders.

Note that we correlate® at #= — /2 with the surface of
section atd=0. We did this because there is a “memory

IV. TIME-DEPENDENT CASE

A desirable extension of the methods presented here
would be to the case of flows that are essentially unsteady, in
the sense that they cannot be made steady by a transforma-
tion to a moving frame. Unfortunately, the dynamical sym-
metry, provided by Arnold’s theorem in the steady case,

effect.” That is, a particle’s motion observed at some angu-ceases to provide integrability in this case. Still, something

lar position is determined by events upstream of it. That is
the diagnostic varies with (and hence so do the flexion field
and the local Reynolds numbeidn the case of the wavy
vortex the diagnostic is similar for differen#, so the
memory effect is not that apparent.

can be done when a spatial volume-preserving symmetry is
present. An example is provided by the case of translational
or rotational symmetry of a Euler flow. The spatial symmetry
provides a stream function for the flow, and the velocity field
is given by
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FIG. 7. (@ The flexion field magnitudgV
X w|, and(b) the local Reynolds number Rfor
the large eccentricity {=0.5) Taylor vortex
case. The vortex amplitude /&= 100. The quan-
tities are calculated = — 7/2, and are scaled
by their maximum value there. The outflow
boundary is located ak=0, and the inflow
boundary atz= .

S aP(XY,t) AP(X,y,1) . It was shown in Ref[24] that this conservation law is asso-
X= T’ T T z=f(x,y,t) ciate.d with a dynam_icgl symmetry generated by the spatial
(4.1) gradients of the vorticity. Now assume that the dependence
on the time of the flow is periodic. Thes, is a constant of
(see Refs[11,24)). In the case of translational symmetry, it motion forv(x,y,t). The corresponding Navier-Stokes flow
is easy to see that the equation for the magnitude of thé given by
vorticity w, in the directionz of the symmetry is

Jw,
— +V-Vo,=vAw,. 4.3
2 V=0 4.2 ”
V- =0. .
at @z The diagnostic for nonintegrability needs to be constructed

FIG. 8. The Eulerian diagnosti® at 0=
— /2, scaled by its maximum value for the large
eccentricity Taylor vortex case.
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A similar treatment can be done in the case of quasigeo-
strophic flows for which the potential vorticitg(x,y,t)
= A+ By is the conserved quantity.

Another example of an essentially time-dependent flow
with remnants of spatial symmetry, suitable for the perturba-
tive methods described here, is that of modulated wavy vor-
tex flow. We will pursue further investigation of the time-
dependent case in future work.

V. DISCUSSION AND CONCLUSIONS

In this paper, based on symmetry considerations, we in-
troduced Eulerian diagnostics that serve as an indicator for
determining regions where chaotic streamlines may appear in
three-dimensional steady Navier-Stokes flows. Diagnostics
are tested on two approximate analytical solutions of the
Navier-Stokes equation. A good correlation is found to exist
between the proposed diagnostic and the particle orbits. Un-
fortunately, the analytic solutions we used are the only ones
available to us. For a more exhaustive test of our diagnostic
tools we need numerical solutions or experimental measure-
ments. The diagnostic tools presented here can highlight the
location of chaotic particle paths without the need to inte-

FIG. 9. Surface of section for the large eccentricity Taylor vor- gratg pargclltle prblts in a I.argefclﬁ'ss of ﬂowﬁ' he fl
tex taken at the position of largest ga@={0). The vortex ampli- It is a built-in assumption of this paper that the flows we

tude isA=100. At #=0 the recirculation zone extends from about study are S_UCh that velocity an_d vorticity vectors are at an
x=0 to the outer cylinder at=1. Note that all intersections of the 2angle that is an order of magnitude larger than the inverse
orbit with the surface are shown. The dots indicate intersections oR€ynolds number. We do not know of any experimental ex-
the orbit traveling in the same direction as the inner cylinder, anc@mples in which this would be violated. In case such a situ-
the crosses mark the intersections in the opposite direction. Whe@tion exists, and velocity is uniformly represented as vortic-
the orbit is in the recirculation zone, intersections in both directiondty multiplied by a constant, ABC flows would provide a
often occur. good model. In the case of a more general Beltrami flow, the
same type of diagnostic as presented in this paper can be
differently than was done in the steady case, since the algerived.
sence of either symmetiigeometrical, translational symme-
try, or dynamical Euler symmethjis enough to render the ACKNOWLEDGMENTS
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